Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | elopaelxp | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } → 𝐴 ∈ ( V × V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) → 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
2 | 1 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) → ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) |
3 | elopab | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) | |
4 | elvv | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
5 | 2 3 4 | 3imtr4i | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } → 𝐴 ∈ ( V × V ) ) |