Metamath Proof Explorer


Theorem elopaelxpOLD

Description: Obsolete version of elopaelxp as of 11-Dec-2024. (Contributed by Alexander van der Vekens, 23-Jun-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion elopaelxpOLD ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } → 𝐴 ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) → 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
2 1 2eximi ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) → ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
3 elopab ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
4 elvv ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
5 2 3 4 3imtr4i ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } → 𝐴 ∈ ( V × V ) )