Metamath Proof Explorer


Theorem eloprabg

Description: The law of concretion for operation class abstraction. Compare elopab . (Contributed by NM, 14-Sep-1999) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses eloprabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
eloprabg.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
eloprabg.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
Assertion eloprabg ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ↔ 𝜃 ) )

Proof

Step Hyp Ref Expression
1 eloprabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 eloprabg.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 eloprabg.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
4 1 2 3 syl3an9b ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜃 ) )
5 4 eloprabga ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } ↔ 𝜃 ) )