Description: The law of concretion for operation class abstraction. Compare elopab . (Contributed by NM, 14-Sep-1999) (Revised by David Abernethy, 19-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eloprabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
eloprabg.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
eloprabg.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
Assertion | eloprabg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } ↔ 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloprabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | eloprabg.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | eloprabg.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
4 | 1 2 3 | syl3an9b | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜃 ) ) |
5 | 4 | eloprabga | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } ↔ 𝜃 ) ) |