Step |
Hyp |
Ref |
Expression |
1 |
|
elovimad.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
2 |
|
elovimad.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
3 |
|
elovimad.3 |
⊢ ( 𝜑 → Fun 𝐹 ) |
4 |
|
elovimad.4 |
⊢ ( 𝜑 → ( 𝐶 × 𝐷 ) ⊆ dom 𝐹 ) |
5 |
|
df-ov |
⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) |
6 |
1 2
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) ) |
7 |
4 6
|
sseldd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) |
8 |
|
funfvima |
⊢ ( ( Fun 𝐹 ∧ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) ) |
9 |
3 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) ) |
10 |
6 9
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) |
11 |
5 10
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) |