Description: Utility lemma for two-parameter classes.
EDITORIAL: can simplify isghm , islmhm . (Contributed by Stefan O'Rear, 21-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elovmpo.d | ⊢ 𝐷 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) | |
elovmpo.c | ⊢ 𝐶 ∈ V | ||
elovmpo.e | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → 𝐶 = 𝐸 ) | ||
Assertion | elovmpo | ⊢ ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpo.d | ⊢ 𝐷 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) | |
2 | elovmpo.c | ⊢ 𝐶 ∈ V | |
3 | elovmpo.e | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → 𝐶 = 𝐸 ) | |
4 | 1 | elmpocl | ⊢ ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) → ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) |
5 | 2 | gen2 | ⊢ ∀ 𝑎 ∀ 𝑏 𝐶 ∈ V |
6 | 3 | eleq1d | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝐶 ∈ V ↔ 𝐸 ∈ V ) ) |
7 | 6 | spc2gv | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑎 ∀ 𝑏 𝐶 ∈ V → 𝐸 ∈ V ) ) |
8 | 5 7 | mpi | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝐸 ∈ V ) |
9 | 3 1 | ovmpoga | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐸 ∈ V ) → ( 𝑋 𝐷 𝑌 ) = 𝐸 ) |
10 | 8 9 | mpd3an3 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐷 𝑌 ) = 𝐸 ) |
11 | 10 | eleq2d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ 𝐹 ∈ 𝐸 ) ) |
12 | 4 11 | biadanii | ⊢ ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐹 ∈ 𝐸 ) ) |
13 | df-3an | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸 ) ↔ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐹 ∈ 𝐸 ) ) | |
14 | 12 13 | bitr4i | ⊢ ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸 ) ) |