Metamath Proof Explorer


Theorem elovmpo

Description: Utility lemma for two-parameter classes.

EDITORIAL: can simplify isghm , islmhm . (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses elovmpo.d 𝐷 = ( 𝑎𝐴 , 𝑏𝐵𝐶 )
elovmpo.c 𝐶 ∈ V
elovmpo.e ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝐶 = 𝐸 )
Assertion elovmpo ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ ( 𝑋𝐴𝑌𝐵𝐹𝐸 ) )

Proof

Step Hyp Ref Expression
1 elovmpo.d 𝐷 = ( 𝑎𝐴 , 𝑏𝐵𝐶 )
2 elovmpo.c 𝐶 ∈ V
3 elovmpo.e ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝐶 = 𝐸 )
4 1 elmpocl ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) → ( 𝑋𝐴𝑌𝐵 ) )
5 2 gen2 𝑎𝑏 𝐶 ∈ V
6 3 eleq1d ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → ( 𝐶 ∈ V ↔ 𝐸 ∈ V ) )
7 6 spc2gv ( ( 𝑋𝐴𝑌𝐵 ) → ( ∀ 𝑎𝑏 𝐶 ∈ V → 𝐸 ∈ V ) )
8 5 7 mpi ( ( 𝑋𝐴𝑌𝐵 ) → 𝐸 ∈ V )
9 3 1 ovmpoga ( ( 𝑋𝐴𝑌𝐵𝐸 ∈ V ) → ( 𝑋 𝐷 𝑌 ) = 𝐸 )
10 8 9 mpd3an3 ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝑋 𝐷 𝑌 ) = 𝐸 )
11 10 eleq2d ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ 𝐹𝐸 ) )
12 4 11 biadanii ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ 𝐹𝐸 ) )
13 df-3an ( ( 𝑋𝐴𝑌𝐵𝐹𝐸 ) ↔ ( ( 𝑋𝐴𝑌𝐵 ) ∧ 𝐹𝐸 ) )
14 12 13 bitr4i ( 𝐹 ∈ ( 𝑋 𝐷 𝑌 ) ↔ ( 𝑋𝐴𝑌𝐵𝐹𝐸 ) )