Metamath Proof Explorer


Theorem elovmpod

Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015) Variant of elovmpo in deduction form. (Revised by AV, 20-Apr-2025)

Ref Expression
Hypotheses elovmpod.o 𝑂 = ( 𝑎𝐴 , 𝑏𝐵𝐶 )
elovmpod.x ( 𝜑𝑋𝐴 )
elovmpod.y ( 𝜑𝑌𝐵 )
elovmpod.d ( 𝜑𝐷𝑉 )
elovmpod.c ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝐶 = 𝐷 )
Assertion elovmpod ( 𝜑 → ( 𝐸 ∈ ( 𝑋 𝑂 𝑌 ) ↔ 𝐸𝐷 ) )

Proof

Step Hyp Ref Expression
1 elovmpod.o 𝑂 = ( 𝑎𝐴 , 𝑏𝐵𝐶 )
2 elovmpod.x ( 𝜑𝑋𝐴 )
3 elovmpod.y ( 𝜑𝑌𝐵 )
4 elovmpod.d ( 𝜑𝐷𝑉 )
5 elovmpod.c ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝐶 = 𝐷 )
6 1 a1i ( 𝜑𝑂 = ( 𝑎𝐴 , 𝑏𝐵𝐶 ) )
7 5 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝑋𝑏 = 𝑌 ) ) → 𝐶 = 𝐷 )
8 6 7 2 3 4 ovmpod ( 𝜑 → ( 𝑋 𝑂 𝑌 ) = 𝐷 )
9 8 eleq2d ( 𝜑 → ( 𝐸 ∈ ( 𝑋 𝑂 𝑌 ) ↔ 𝐸𝐷 ) )