Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015) Variant of elovmpo in deduction form. (Revised by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovmpod.o | ⊢ 𝑂 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) | |
| elovmpod.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| elovmpod.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| elovmpod.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| elovmpod.c | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → 𝐶 = 𝐷 ) | ||
| Assertion | elovmpod | ⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝑋 𝑂 𝑌 ) ↔ 𝐸 ∈ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpod.o | ⊢ 𝑂 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | elovmpod.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 3 | elovmpod.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | elovmpod.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 5 | elovmpod.c | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → 𝐶 = 𝐷 ) | |
| 6 | 1 | a1i | ⊢ ( 𝜑 → 𝑂 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 𝐶 ) ) |
| 7 | 5 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) ) → 𝐶 = 𝐷 ) |
| 8 | 6 7 2 3 4 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝑂 𝑌 ) = 𝐷 ) |
| 9 | 8 | eleq2d | ⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝑋 𝑂 𝑌 ) ↔ 𝐸 ∈ 𝐷 ) ) |