Step |
Hyp |
Ref |
Expression |
1 |
|
elovmporab.o |
⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ 𝑀 ∣ 𝜑 } ) |
2 |
|
elovmporab.v |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑀 ∈ V ) |
3 |
1
|
elmpocl |
⊢ ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
4 |
1
|
a1i |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ 𝑀 ∣ 𝜑 } ) ) |
5 |
|
sbceq1a |
⊢ ( 𝑦 = 𝑌 → ( 𝜑 ↔ [ 𝑌 / 𝑦 ] 𝜑 ) ) |
6 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑋 → ( [ 𝑌 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
7 |
5 6
|
sylan9bbr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
9 |
8
|
rabbidv |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → { 𝑧 ∈ 𝑀 ∣ 𝜑 } = { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
10 |
|
eqidd |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑥 = 𝑋 ) → V = V ) |
11 |
|
simpl |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑋 ∈ V ) |
12 |
|
simpr |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑌 ∈ V ) |
13 |
|
rabexg |
⊢ ( 𝑀 ∈ V → { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
14 |
2 13
|
syl |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
16 |
15
|
nfel1 |
⊢ Ⅎ 𝑥 𝑋 ∈ V |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
18 |
17
|
nfel1 |
⊢ Ⅎ 𝑥 𝑌 ∈ V |
19 |
16 18
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑋 |
21 |
20
|
nfel1 |
⊢ Ⅎ 𝑦 𝑋 ∈ V |
22 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑌 |
23 |
22
|
nfel1 |
⊢ Ⅎ 𝑦 𝑌 ∈ V |
24 |
21 23
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) |
25 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 |
26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑀 |
27 |
25 26
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } |
28 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑌 / 𝑦 ] 𝜑 |
29 |
20 28
|
nfsbcw |
⊢ Ⅎ 𝑦 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 |
30 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑀 |
31 |
29 30
|
nfrabw |
⊢ Ⅎ 𝑦 { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } |
32 |
4 9 10 11 12 14 19 24 20 17 27 31
|
ovmpodxf |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 𝑂 𝑌 ) = { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
33 |
32
|
eleq2d |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) ↔ 𝑍 ∈ { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
34 |
|
df-3an |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀 ) ↔ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑍 ∈ 𝑀 ) ) |
35 |
34
|
simplbi2com |
⊢ ( 𝑍 ∈ 𝑀 → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀 ) ) ) |
36 |
|
elrabi |
⊢ ( 𝑍 ∈ { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } → 𝑍 ∈ 𝑀 ) |
37 |
35 36
|
syl11 |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ { 𝑧 ∈ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀 ) ) ) |
38 |
33 37
|
sylbid |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀 ) ) ) |
39 |
3 38
|
mpcom |
⊢ ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀 ) ) |