| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elovmpowrd.o |
⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) |
| 2 |
|
csbwrdg |
⊢ ( 𝑣 ∈ V → ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 = Word 𝑣 ) |
| 3 |
2
|
eqcomd |
⊢ ( 𝑣 ∈ V → Word 𝑣 = ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑣 ∈ V ∧ 𝑦 ∈ V ) → Word 𝑣 = ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ) |
| 5 |
4
|
rabeqdv |
⊢ ( ( 𝑣 ∈ V ∧ 𝑦 ∈ V ) → { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } = { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
| 6 |
5
|
mpoeq3ia |
⊢ ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
| 7 |
1 6
|
eqtri |
⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
| 8 |
|
csbwrdg |
⊢ ( 𝑉 ∈ V → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 = Word 𝑉 ) |
| 9 |
|
wrdexg |
⊢ ( 𝑉 ∈ V → Word 𝑉 ∈ V ) |
| 10 |
8 9
|
eqeltrd |
⊢ ( 𝑉 ∈ V → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ∈ V ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ∈ V ) |
| 12 |
7 11
|
elovmporab1w |
⊢ ( 𝑍 ∈ ( 𝑉 𝑂 𝑌 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ) ) |
| 13 |
8
|
eleq2d |
⊢ ( 𝑉 ∈ V → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ↔ 𝑍 ∈ Word 𝑉 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ↔ 𝑍 ∈ Word 𝑉 ) ) |
| 15 |
|
id |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |
| 16 |
15
|
3expia |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ Word 𝑉 → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) ) |
| 17 |
14 16
|
sylbid |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) ) |
| 18 |
17
|
3impia |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |
| 19 |
12 18
|
syl |
⊢ ( 𝑍 ∈ ( 𝑉 𝑂 𝑌 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |