Step |
Hyp |
Ref |
Expression |
1 |
|
elovmpowrd.o |
⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) |
2 |
|
csbwrdg |
⊢ ( 𝑣 ∈ V → ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 = Word 𝑣 ) |
3 |
2
|
eqcomd |
⊢ ( 𝑣 ∈ V → Word 𝑣 = ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑣 ∈ V ∧ 𝑦 ∈ V ) → Word 𝑣 = ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ) |
5 |
4
|
rabeqdv |
⊢ ( ( 𝑣 ∈ V ∧ 𝑦 ∈ V ) → { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } = { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
6 |
5
|
mpoeq3ia |
⊢ ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
7 |
1 6
|
eqtri |
⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑣 / 𝑥 ⦌ Word 𝑥 ∣ 𝜑 } ) |
8 |
|
csbwrdg |
⊢ ( 𝑉 ∈ V → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 = Word 𝑉 ) |
9 |
|
wrdexg |
⊢ ( 𝑉 ∈ V → Word 𝑉 ∈ V ) |
10 |
8 9
|
eqeltrd |
⊢ ( 𝑉 ∈ V → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ∈ V ) |
11 |
10
|
adantr |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ∈ V ) |
12 |
7 11
|
elovmporab1w |
⊢ ( 𝑍 ∈ ( 𝑉 𝑂 𝑌 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ) ) |
13 |
8
|
eleq2d |
⊢ ( 𝑉 ∈ V → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ↔ 𝑍 ∈ Word 𝑉 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ↔ 𝑍 ∈ Word 𝑉 ) ) |
15 |
|
id |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |
16 |
15
|
3expia |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ Word 𝑉 → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) ) |
17 |
14 16
|
sylbid |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑉 / 𝑥 ⦌ Word 𝑥 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |
19 |
12 18
|
syl |
⊢ ( 𝑍 ∈ ( 𝑉 𝑂 𝑌 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉 ) ) |