| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elovmpt3imp.o |
⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ 𝐵 ) ) |
| 2 |
|
ne0i |
⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ ) |
| 3 |
|
ax-1 |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
| 4 |
1
|
mpondm0 |
⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 𝑂 𝑌 ) = ∅ ) |
| 5 |
|
fveq1 |
⊢ ( ( 𝑋 𝑂 𝑌 ) = ∅ → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ( ∅ ‘ 𝑍 ) ) |
| 6 |
|
0fv |
⊢ ( ∅ ‘ 𝑍 ) = ∅ |
| 7 |
5 6
|
eqtrdi |
⊢ ( ( 𝑋 𝑂 𝑌 ) = ∅ → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ∅ ) |
| 8 |
|
eqneqall |
⊢ ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ∅ → ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
| 9 |
4 7 8
|
3syl |
⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
| 10 |
3 9
|
pm2.61i |
⊢ ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 11 |
2 10
|
syl |
⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |