Step |
Hyp |
Ref |
Expression |
1 |
|
elovmpt3imp.o |
⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ 𝐵 ) ) |
2 |
|
ne0i |
⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ ) |
3 |
|
ax-1 |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
4 |
1
|
mpondm0 |
⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 𝑂 𝑌 ) = ∅ ) |
5 |
|
fveq1 |
⊢ ( ( 𝑋 𝑂 𝑌 ) = ∅ → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ( ∅ ‘ 𝑍 ) ) |
6 |
|
0fv |
⊢ ( ∅ ‘ 𝑍 ) = ∅ |
7 |
5 6
|
eqtrdi |
⊢ ( ( 𝑋 𝑂 𝑌 ) = ∅ → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ∅ ) |
8 |
|
eqneqall |
⊢ ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ∅ → ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
9 |
4 7 8
|
3syl |
⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ) |
10 |
3 9
|
pm2.61i |
⊢ ( ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ≠ ∅ → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
11 |
2 10
|
syl |
⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |