Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by AV, 17-Jul-2018) (Revised by AV, 16-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elovmpt3rab.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
Assertion | elovmpt3rab | ⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇 ) → ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpt3rab.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
2 | eqidd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝑀 ) | |
3 | eqidd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝑁 ) | |
4 | 1 2 3 | elovmpt3rab1 | ⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑇 ) → ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍 ∈ 𝑀 ∧ 𝐴 ∈ 𝑁 ) ) ) ) |