Metamath Proof Explorer


Theorem elovmpt3rab

Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by AV, 17-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypothesis elovmpt3rab.o 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧𝑀 ↦ { 𝑎𝑁𝜑 } ) )
Assertion elovmpt3rab ( ( 𝑀𝑈𝑁𝑇 ) → ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍𝑀𝐴𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 elovmpt3rab.o 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧𝑀 ↦ { 𝑎𝑁𝜑 } ) )
2 eqidd ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑀 = 𝑀 )
3 eqidd ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑁 = 𝑁 )
4 1 2 3 elovmpt3rab1 ( ( 𝑀𝑈𝑁𝑇 ) → ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍𝑀𝐴𝑁 ) ) ) )