Step |
Hyp |
Ref |
Expression |
1 |
|
elovmptnn0wrd.o |
⊢ 𝑂 = ( 𝑣 ∈ V , 𝑦 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑧 ∈ Word 𝑣 ∣ 𝜑 } ) ) |
2 |
1
|
elovmpt3imp |
⊢ ( 𝑍 ∈ ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 ) → ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) ) |
3 |
|
wrdexg |
⊢ ( 𝑉 ∈ V → Word 𝑉 ∈ V ) |
4 |
3
|
adantr |
⊢ ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) → Word 𝑉 ∈ V ) |
5 |
2 4
|
syl |
⊢ ( 𝑍 ∈ ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 ) → Word 𝑉 ∈ V ) |
6 |
|
nn0ex |
⊢ ℕ0 ∈ V |
7 |
5 6
|
jctil |
⊢ ( 𝑍 ∈ ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 ) → ( ℕ0 ∈ V ∧ Word 𝑉 ∈ V ) ) |
8 |
|
eqidd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑦 = 𝑌 ) → ℕ0 = ℕ0 ) |
9 |
|
wrdeq |
⊢ ( 𝑣 = 𝑉 → Word 𝑣 = Word 𝑉 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑦 = 𝑌 ) → Word 𝑣 = Word 𝑉 ) |
11 |
1 8 10
|
elovmpt3rab1 |
⊢ ( ( ℕ0 ∈ V ∧ Word 𝑉 ∈ V ) → ( 𝑍 ∈ ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 ) → ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑍 ∈ Word 𝑉 ) ) ) ) |
12 |
7 11
|
mpcom |
⊢ ( 𝑍 ∈ ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 ) → ( ( 𝑉 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑍 ∈ Word 𝑉 ) ) ) |