| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elovmptnn0wrd.o | ⊢ 𝑂  =  ( 𝑣  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑧  ∈  Word  𝑣  ∣  𝜑 } ) ) | 
						
							| 2 | 1 | elovmpt3imp | ⊢ ( 𝑍  ∈  ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 )  →  ( 𝑉  ∈  V  ∧  𝑌  ∈  V ) ) | 
						
							| 3 |  | wrdexg | ⊢ ( 𝑉  ∈  V  →  Word  𝑉  ∈  V ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V )  →  Word  𝑉  ∈  V ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝑍  ∈  ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 )  →  Word  𝑉  ∈  V ) | 
						
							| 6 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 7 | 5 6 | jctil | ⊢ ( 𝑍  ∈  ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 )  →  ( ℕ0  ∈  V  ∧  Word  𝑉  ∈  V ) ) | 
						
							| 8 |  | eqidd | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑦  =  𝑌 )  →  ℕ0  =  ℕ0 ) | 
						
							| 9 |  | wrdeq | ⊢ ( 𝑣  =  𝑉  →  Word  𝑣  =  Word  𝑉 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑦  =  𝑌 )  →  Word  𝑣  =  Word  𝑉 ) | 
						
							| 11 | 1 8 10 | elovmpt3rab1 | ⊢ ( ( ℕ0  ∈  V  ∧  Word  𝑉  ∈  V )  →  ( 𝑍  ∈  ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 )  →  ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑍  ∈  Word  𝑉 ) ) ) ) | 
						
							| 12 | 7 11 | mpcom | ⊢ ( 𝑍  ∈  ( ( 𝑉 𝑂 𝑌 ) ‘ 𝑁 )  →  ( ( 𝑉  ∈  V  ∧  𝑌  ∈  V )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑍  ∈  Word  𝑉 ) ) ) |