Step |
Hyp |
Ref |
Expression |
1 |
|
elovolm.1 |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
2 |
|
elovolmr.2 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
3 |
|
elovolmlem |
⊢ ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
4 |
|
id |
⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) |
5 |
4
|
eqcomd |
⊢ ( 𝑓 = 𝐹 → 𝐹 = 𝑓 ) |
6 |
5
|
coeq2d |
⊢ ( 𝑓 = 𝐹 → ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝑓 ) ) |
7 |
6
|
seqeq3d |
⊢ ( 𝑓 = 𝐹 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
8 |
2 7
|
eqtrid |
⊢ ( 𝑓 = 𝐹 → 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
9 |
8
|
rneqd |
⊢ ( 𝑓 = 𝐹 → ran 𝑆 = ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
10 |
9
|
supeq1d |
⊢ ( 𝑓 = 𝐹 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
11 |
10
|
biantrud |
⊢ ( 𝑓 = 𝐹 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
12 |
|
coeq2 |
⊢ ( 𝑓 = 𝐹 → ( (,) ∘ 𝑓 ) = ( (,) ∘ 𝐹 ) ) |
13 |
12
|
rneqd |
⊢ ( 𝑓 = 𝐹 → ran ( (,) ∘ 𝑓 ) = ran ( (,) ∘ 𝐹 ) ) |
14 |
13
|
unieqd |
⊢ ( 𝑓 = 𝐹 → ∪ ran ( (,) ∘ 𝑓 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
15 |
14
|
sseq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
16 |
11 15
|
bitr3d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
18 |
3 17
|
sylanbr |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
19 |
1
|
elovolm |
⊢ ( sup ( ran 𝑆 , ℝ* , < ) ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
20 |
18 19
|
sylibr |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ 𝑀 ) |