Metamath Proof Explorer


Theorem elpadd0

Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
padd0.p + = ( +𝑃𝐾 )
Assertion elpadd0 ( ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆𝑋𝑆𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
2 padd0.p + = ( +𝑃𝐾 )
3 neanior ( ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ↔ ¬ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) )
4 3 bicomi ( ¬ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) )
5 4 con1bii ( ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ↔ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) )
6 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
7 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
8 6 7 1 2 elpadd ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆𝑋𝑆𝑌 ) ∨ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) )
9 rex0 ¬ ∃ 𝑞 ∈ ∅ ∃ 𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 )
10 rexeq ( 𝑋 = ∅ → ( ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑞 ∈ ∅ ∃ 𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) )
11 9 10 mtbiri ( 𝑋 = ∅ → ¬ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
12 rex0 ¬ ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 )
13 12 a1i ( 𝑞𝑋 → ¬ ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
14 13 nrex ¬ ∃ 𝑞𝑋𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 )
15 rexeq ( 𝑌 = ∅ → ( ∃ 𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) )
16 15 rexbidv ( 𝑌 = ∅ → ( ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑞𝑋𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) )
17 14 16 mtbiri ( 𝑌 = ∅ → ¬ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
18 11 17 jaoi ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ¬ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
19 18 intnand ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ¬ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) )
20 biorf ( ¬ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → ( ( 𝑆𝑋𝑆𝑌 ) ↔ ( ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ∨ ( 𝑆𝑋𝑆𝑌 ) ) ) )
21 19 20 syl ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ( ( 𝑆𝑋𝑆𝑌 ) ↔ ( ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ∨ ( 𝑆𝑋𝑆𝑌 ) ) ) )
22 orcom ( ( ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ∨ ( 𝑆𝑋𝑆𝑌 ) ) ↔ ( ( 𝑆𝑋𝑆𝑌 ) ∨ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) )
23 21 22 bitr2di ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ( ( ( 𝑆𝑋𝑆𝑌 ) ∨ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ↔ ( 𝑆𝑋𝑆𝑌 ) ) )
24 8 23 sylan9bb ( ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆𝑋𝑆𝑌 ) ) )
25 5 24 sylan2b ( ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆𝑋𝑆𝑌 ) ) )