Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
simp1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
6 |
|
simp2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
7 |
6
|
snssd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → { 𝑄 } ⊆ 𝐴 ) |
8 |
|
simp3 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → 𝑅 ∈ 𝐴 ) |
9 |
|
snnzg |
⊢ ( 𝑄 ∈ 𝐴 → { 𝑄 } ≠ ∅ ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → { 𝑄 } ≠ ∅ ) |
11 |
1 2 3 4
|
elpaddat |
⊢ ( ( ( 𝐾 ∈ Lat ∧ { 𝑄 } ⊆ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ { 𝑄 } ≠ ∅ ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑟 ∨ 𝑅 ) ) ) ) |
12 |
5 7 8 10 11
|
syl31anc |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑟 ∨ 𝑅 ) ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑟 = 𝑄 → ( 𝑟 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑟 = 𝑄 → ( 𝑆 ≤ ( 𝑟 ∨ 𝑅 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
15 |
14
|
rexsng |
⊢ ( 𝑄 ∈ 𝐴 → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑟 ∨ 𝑅 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑟 ∨ 𝑅 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑟 ∨ 𝑅 ) ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
18 |
12 17
|
bitrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |