| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							paddfval.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							paddfval.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							paddfval.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							paddfval.p | 
							⊢  +   =  ( +𝑃 ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝐾  ∈  Lat )  | 
						
						
							| 6 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							snssd | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  { 𝑄 }  ⊆  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							snnzg | 
							⊢ ( 𝑄  ∈  𝐴  →  { 𝑄 }  ≠  ∅ )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  { 𝑄 }  ≠  ∅ )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							elpaddat | 
							⊢ ( ( ( 𝐾  ∈  Lat  ∧  { 𝑄 }  ⊆  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  { 𝑄 }  ≠  ∅ )  →  ( 𝑆  ∈  ( { 𝑄 }  +  { 𝑅 } )  ↔  ( 𝑆  ∈  𝐴  ∧  ∃ 𝑟  ∈  { 𝑄 } 𝑆  ≤  ( 𝑟  ∨  𝑅 ) ) ) )  | 
						
						
							| 12 | 
							
								5 7 8 10 11
							 | 
							syl31anc | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑆  ∈  ( { 𝑄 }  +  { 𝑅 } )  ↔  ( 𝑆  ∈  𝐴  ∧  ∃ 𝑟  ∈  { 𝑄 } 𝑆  ≤  ( 𝑟  ∨  𝑅 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑟  =  𝑄  →  ( 𝑟  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							breq2d | 
							⊢ ( 𝑟  =  𝑄  →  ( 𝑆  ≤  ( 𝑟  ∨  𝑅 )  ↔  𝑆  ≤  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexsng | 
							⊢ ( 𝑄  ∈  𝐴  →  ( ∃ 𝑟  ∈  { 𝑄 } 𝑆  ≤  ( 𝑟  ∨  𝑅 )  ↔  𝑆  ≤  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( ∃ 𝑟  ∈  { 𝑄 } 𝑆  ≤  ( 𝑟  ∨  𝑅 )  ↔  𝑆  ≤  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( ( 𝑆  ∈  𝐴  ∧  ∃ 𝑟  ∈  { 𝑄 } 𝑆  ≤  ( 𝑟  ∨  𝑅 ) )  ↔  ( 𝑆  ∈  𝐴  ∧  𝑆  ≤  ( 𝑄  ∨  𝑅 ) ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							bitrd | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑆  ∈  ( { 𝑄 }  +  { 𝑅 } )  ↔  ( 𝑆  ∈  𝐴  ∧  𝑆  ≤  ( 𝑄  ∨  𝑅 ) ) ) )  |