Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
1 2 3 4
|
elpadd2at |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
6 |
5
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
7 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) |
8 |
7
|
biantrurd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
9 |
6 8
|
bitr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |