| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 5 |
1 2 3 4
|
elpadd2at |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 6 |
5
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 7 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) |
| 8 |
7
|
biantrurd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 9 |
6 8
|
bitr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |