Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝐾 ∈ Lat ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝑋 ⊆ 𝐴 ) |
7 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝑄 ∈ 𝐴 ) |
8 |
7
|
snssd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → { 𝑄 } ⊆ 𝐴 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝑋 ≠ ∅ ) |
10 |
7
|
snn0d |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → { 𝑄 } ≠ ∅ ) |
11 |
1 2 3 4
|
elpaddn0 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ { 𝑄 } ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ { 𝑄 } ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ) ) ) |
12 |
5 6 8 9 10 11
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑟 = 𝑄 → ( 𝑝 ∨ 𝑟 ) = ( 𝑝 ∨ 𝑄 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑟 = 𝑄 → ( 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
15 |
14
|
rexsng |
⊢ ( 𝑄 ∈ 𝐴 → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
16 |
7 15
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
17 |
16
|
rexbidv |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ ∃ 𝑝 ∈ 𝑋 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) ) |
19 |
12 18
|
bitrd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) ) |