| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							paddfval.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							paddfval.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							paddfval.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							paddfval.p | 
							⊢  +   =  ( +𝑃 ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							elpaddat | 
							⊢ ( ( ( 𝐾  ∈  Lat  ∧  𝑋  ⊆  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ∅ )  →  ( 𝑅  ∈  ( 𝑋  +  { 𝑄 } )  ↔  ( 𝑅  ∈  𝐴  ∧  ∃ 𝑝  ∈  𝑋 𝑅  ≤  ( 𝑝  ∨  𝑄 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  ∃ 𝑝  ∈  𝑋 𝑅  ≤  ( 𝑝  ∨  𝑄 ) )  →  ∃ 𝑝  ∈  𝑋 𝑅  ≤  ( 𝑝  ∨  𝑄 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							biimtrdi | 
							⊢ ( ( ( 𝐾  ∈  Lat  ∧  𝑋  ⊆  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑋  ≠  ∅ )  →  ( 𝑅  ∈  ( 𝑋  +  { 𝑄 } )  →  ∃ 𝑝  ∈  𝑋 𝑅  ≤  ( 𝑝  ∨  𝑄 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							impr | 
							⊢ ( ( ( 𝐾  ∈  Lat  ∧  𝑋  ⊆  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑋  ≠  ∅  ∧  𝑅  ∈  ( 𝑋  +  { 𝑄 } ) ) )  →  ∃ 𝑝  ∈  𝑋 𝑅  ≤  ( 𝑝  ∨  𝑄 ) )  |