Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑋 ⊆ 𝐴 ) |
7 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
8 |
7
|
snssd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → { 𝑄 } ⊆ 𝐴 ) |
9 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝑋 ) |
10 |
|
snidg |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ { 𝑄 } ) |
11 |
7 10
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑄 ∈ { 𝑄 } ) |
12 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) |
13 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) |
14 |
1 2 3 4
|
elpaddri |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ { 𝑄 } ⊆ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑄 ∈ { 𝑄 } ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ) |
15 |
5 6 8 9 11 12 13 14
|
syl322anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ) |