Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
1 2 3 4
|
elpadd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
7 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → 𝑋 ⊆ 𝐴 ) |
8 |
7
|
sseld |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑋 → 𝑆 ∈ 𝐴 ) ) |
9 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝐾 ∈ Lat ) |
10 |
|
ssel2 |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑆 ∈ 𝑋 ) → 𝑆 ∈ 𝐴 ) |
11 |
10
|
3ad2antl2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) → 𝑆 ∈ 𝐴 ) |
12 |
11
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑆 ∈ 𝐴 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 3
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
15 |
12 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) → 𝑌 ⊆ 𝐴 ) |
17 |
16
|
sselda |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑟 ∈ 𝐴 ) |
18 |
13 3
|
atbase |
⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
20 |
13 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ) → 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) |
21 |
9 15 19 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑌 ) → 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) |
22 |
21
|
reximdva0 |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑋 ) ∧ 𝑌 ≠ ∅ ) → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) |
23 |
22
|
exp31 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ 𝑋 → ( 𝑌 ≠ ∅ → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) ) |
24 |
23
|
com23 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 ≠ ∅ → ( 𝑆 ∈ 𝑋 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ≠ ∅ ) → ( 𝑆 ∈ 𝑋 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) |
26 |
25
|
ancld |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ≠ ∅ ) → ( 𝑆 ∈ 𝑋 → ( 𝑆 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) ) |
27 |
|
oveq1 |
⊢ ( 𝑞 = 𝑆 → ( 𝑞 ∨ 𝑟 ) = ( 𝑆 ∨ 𝑟 ) ) |
28 |
27
|
breq2d |
⊢ ( 𝑞 = 𝑆 → ( 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) |
29 |
28
|
rexbidv |
⊢ ( 𝑞 = 𝑆 → ( ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) ) |
30 |
29
|
rspcev |
⊢ ( ( 𝑆 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑆 ∨ 𝑟 ) ) → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
31 |
26 30
|
syl6 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ≠ ∅ ) → ( 𝑆 ∈ 𝑋 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
32 |
31
|
adantrl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑋 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
33 |
8 32
|
jcad |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑋 → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
34 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → 𝑌 ⊆ 𝐴 ) |
35 |
34
|
sseld |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑌 → 𝑆 ∈ 𝐴 ) ) |
36 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝐾 ∈ Lat ) |
37 |
|
ssel2 |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑞 ∈ 𝑋 ) → 𝑞 ∈ 𝐴 ) |
38 |
37
|
3ad2antl2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → 𝑞 ∈ 𝐴 ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑞 ∈ 𝐴 ) |
40 |
13 3
|
atbase |
⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
41 |
39 40
|
syl |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
42 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → 𝑌 ⊆ 𝐴 ) |
43 |
42
|
sselda |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑆 ∈ 𝐴 ) |
44 |
43 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
45 |
13 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) |
46 |
36 41 44 45
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑆 ∈ 𝑌 ) → 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) |
47 |
46
|
ex |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → ( 𝑆 ∈ 𝑌 → 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) ) |
48 |
47
|
ancld |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → ( 𝑆 ∈ 𝑌 → ( 𝑆 ∈ 𝑌 ∧ 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) ) ) |
49 |
|
oveq2 |
⊢ ( 𝑟 = 𝑆 → ( 𝑞 ∨ 𝑟 ) = ( 𝑞 ∨ 𝑆 ) ) |
50 |
49
|
breq2d |
⊢ ( 𝑟 = 𝑆 → ( 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) ) |
51 |
50
|
rspcev |
⊢ ( ( 𝑆 ∈ 𝑌 ∧ 𝑆 ≤ ( 𝑞 ∨ 𝑆 ) ) → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
52 |
48 51
|
syl6 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑞 ∈ 𝑋 ) → ( 𝑆 ∈ 𝑌 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
53 |
52
|
impancom |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( 𝑞 ∈ 𝑋 → ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
54 |
53
|
ancld |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( 𝑞 ∈ 𝑋 → ( 𝑞 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
55 |
54
|
eximdv |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( ∃ 𝑞 𝑞 ∈ 𝑋 → ∃ 𝑞 ( 𝑞 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
56 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑞 𝑞 ∈ 𝑋 ) |
57 |
|
df-rex |
⊢ ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ( 𝑞 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
58 |
55 56 57
|
3imtr4g |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑆 ∈ 𝑌 ) → ( 𝑋 ≠ ∅ → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
59 |
58
|
impancom |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑆 ∈ 𝑌 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
60 |
59
|
adantrr |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑌 → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
61 |
35 60
|
jcad |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ 𝑌 → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
62 |
33 61
|
jaod |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
63 |
|
pm4.72 |
⊢ ( ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) → ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ↔ ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
64 |
62 63
|
sylib |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) ) |
65 |
6 64
|
bitr4d |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |