Metamath Proof Explorer


Theorem elpaddri

Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion elpaddri ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → 𝑆 ∈ ( 𝑋 + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 simp3l ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → 𝑆𝐴 )
6 simp2l ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → 𝑄𝑋 )
7 simp2r ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → 𝑅𝑌 )
8 simp3r ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → 𝑆 ( 𝑄 𝑅 ) )
9 oveq1 ( 𝑞 = 𝑄 → ( 𝑞 𝑟 ) = ( 𝑄 𝑟 ) )
10 9 breq2d ( 𝑞 = 𝑄 → ( 𝑆 ( 𝑞 𝑟 ) ↔ 𝑆 ( 𝑄 𝑟 ) ) )
11 oveq2 ( 𝑟 = 𝑅 → ( 𝑄 𝑟 ) = ( 𝑄 𝑅 ) )
12 11 breq2d ( 𝑟 = 𝑅 → ( 𝑆 ( 𝑄 𝑟 ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )
13 10 12 rspc2ev ( ( 𝑄𝑋𝑅𝑌𝑆 ( 𝑄 𝑅 ) ) → ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) )
14 6 7 8 13 syl3anc ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) )
15 ne0i ( 𝑄𝑋𝑋 ≠ ∅ )
16 ne0i ( 𝑅𝑌𝑌 ≠ ∅ )
17 15 16 anim12i ( ( 𝑄𝑋𝑅𝑌 ) → ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) )
18 17 anim2i ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ) → ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) )
19 18 3adant3 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) )
20 1 2 3 4 elpaddn0 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) ) )
21 19 20 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑆 ( 𝑞 𝑟 ) ) ) )
22 5 14 21 mpbir2and ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑄𝑋𝑅𝑌 ) ∧ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) → 𝑆 ∈ ( 𝑋 + 𝑌 ) )