Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ 𝐴 ) |
6 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ 𝑋 ) |
7 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝑌 ) |
8 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑅 ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑆 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
13 |
10 12
|
rspc2ev |
⊢ ( ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
14 |
6 7 8 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
15 |
|
ne0i |
⊢ ( 𝑄 ∈ 𝑋 → 𝑋 ≠ ∅ ) |
16 |
|
ne0i |
⊢ ( 𝑅 ∈ 𝑌 → 𝑌 ≠ ∅ ) |
17 |
15 16
|
anim12i |
⊢ ( ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) → ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) |
18 |
17
|
anim2i |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ) |
19 |
18
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ) |
20 |
1 2 3 4
|
elpaddn0 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
22 |
5 14 21
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ ( 𝑋 + 𝑌 ) ) |