Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pclfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
pclfval.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
pclfval.c | ⊢ 𝑈 = ( PCl ‘ 𝐾 ) | ||
elpcl.q | ⊢ 𝑄 ∈ V | ||
Assertion | elpclN | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑄 ∈ ( 𝑈 ‘ 𝑋 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
2 | pclfval.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
3 | pclfval.c | ⊢ 𝑈 = ( PCl ‘ 𝐾 ) | |
4 | elpcl.q | ⊢ 𝑄 ∈ V | |
5 | 1 2 3 | pclvalN | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
6 | 5 | eleq2d | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑄 ∈ ( 𝑈 ‘ 𝑋 ) ↔ 𝑄 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) |
7 | 4 | elintrab | ⊢ ( 𝑄 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦 ) ) |
8 | 6 7 | bitrdi | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑄 ∈ ( 𝑈 ‘ 𝑋 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦 ) ) ) |