Metamath Proof Explorer


Theorem elpclN

Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a 𝐴 = ( Atoms ‘ 𝐾 )
pclfval.s 𝑆 = ( PSubSp ‘ 𝐾 )
pclfval.c 𝑈 = ( PCl ‘ 𝐾 )
elpcl.q 𝑄 ∈ V
Assertion elpclN ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑄 ∈ ( 𝑈𝑋 ) ↔ ∀ 𝑦𝑆 ( 𝑋𝑦𝑄𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 pclfval.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pclfval.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 pclfval.c 𝑈 = ( PCl ‘ 𝐾 )
4 elpcl.q 𝑄 ∈ V
5 1 2 3 pclvalN ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑈𝑋 ) = { 𝑦𝑆𝑋𝑦 } )
6 5 eleq2d ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑄 ∈ ( 𝑈𝑋 ) ↔ 𝑄 { 𝑦𝑆𝑋𝑦 } ) )
7 4 elintrab ( 𝑄 { 𝑦𝑆𝑋𝑦 } ↔ ∀ 𝑦𝑆 ( 𝑋𝑦𝑄𝑦 ) )
8 6 7 bitrdi ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑄 ∈ ( 𝑈𝑋 ) ↔ ∀ 𝑦𝑆 ( 𝑋𝑦𝑄𝑦 ) ) )