Step |
Hyp |
Ref |
Expression |
1 |
|
elpcli.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
2 |
|
elpcli.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
3 |
|
simp1 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → 𝐾 ∈ 𝑉 ) |
4 |
|
simp2 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ⊆ 𝑌 ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
8 |
4 7
|
sstrd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
9 |
5 1 2
|
pclvalN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧 } ) |
10 |
3 8 9
|
syl2anc |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧 } ) |
11 |
10
|
eleq2d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑄 ∈ ( 𝑈 ‘ 𝑋 ) ↔ 𝑄 ∈ ∩ { 𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧 } ) ) |
12 |
|
elintrabg |
⊢ ( 𝑄 ∈ ∩ { 𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧 } → ( 𝑄 ∈ ∩ { 𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧 } ↔ ∀ 𝑧 ∈ 𝑆 ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) ) ) |
13 |
12
|
ibi |
⊢ ( 𝑄 ∈ ∩ { 𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧 } → ∀ 𝑧 ∈ 𝑆 ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) ) |
14 |
11 13
|
syl6bi |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑄 ∈ ( 𝑈 ‘ 𝑋 ) → ∀ 𝑧 ∈ 𝑆 ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) ) ) |
15 |
|
sseq2 |
⊢ ( 𝑧 = 𝑌 → ( 𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑌 ) ) |
16 |
|
eleq2 |
⊢ ( 𝑧 = 𝑌 → ( 𝑄 ∈ 𝑧 ↔ 𝑄 ∈ 𝑌 ) ) |
17 |
15 16
|
imbi12d |
⊢ ( 𝑧 = 𝑌 → ( ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) ↔ ( 𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌 ) ) ) |
18 |
17
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑆 ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) → ( 𝑌 ∈ 𝑆 → ( 𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌 ) ) ) |
19 |
18
|
com13 |
⊢ ( 𝑋 ⊆ 𝑌 → ( 𝑌 ∈ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) → 𝑄 ∈ 𝑌 ) ) ) |
20 |
19
|
imp |
⊢ ( ( 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → ( ∀ 𝑧 ∈ 𝑆 ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) → 𝑄 ∈ 𝑌 ) ) |
21 |
20
|
3adant1 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → ( ∀ 𝑧 ∈ 𝑆 ( 𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧 ) → 𝑄 ∈ 𝑌 ) ) |
22 |
14 21
|
syld |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑄 ∈ ( 𝑈 ‘ 𝑋 ) → 𝑄 ∈ 𝑌 ) ) |
23 |
22
|
imp |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆 ) ∧ 𝑄 ∈ ( 𝑈 ‘ 𝑋 ) ) → 𝑄 ∈ 𝑌 ) |