Metamath Proof Explorer


Theorem elpcliN

Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses elpcli.s 𝑆 = ( PSubSp ‘ 𝐾 )
elpcli.c 𝑈 = ( PCl ‘ 𝐾 )
Assertion elpcliN ( ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) ∧ 𝑄 ∈ ( 𝑈𝑋 ) ) → 𝑄𝑌 )

Proof

Step Hyp Ref Expression
1 elpcli.s 𝑆 = ( PSubSp ‘ 𝐾 )
2 elpcli.c 𝑈 = ( PCl ‘ 𝐾 )
3 simp1 ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → 𝐾𝑉 )
4 simp2 ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → 𝑋𝑌 )
5 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
6 5 1 psubssat ( ( 𝐾𝑉𝑌𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) )
7 6 3adant2 ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) )
8 4 7 sstrd ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) )
9 5 1 2 pclvalN ( ( 𝐾𝑉𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑈𝑋 ) = { 𝑧𝑆𝑋𝑧 } )
10 3 8 9 syl2anc ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → ( 𝑈𝑋 ) = { 𝑧𝑆𝑋𝑧 } )
11 10 eleq2d ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → ( 𝑄 ∈ ( 𝑈𝑋 ) ↔ 𝑄 { 𝑧𝑆𝑋𝑧 } ) )
12 elintrabg ( 𝑄 { 𝑧𝑆𝑋𝑧 } → ( 𝑄 { 𝑧𝑆𝑋𝑧 } ↔ ∀ 𝑧𝑆 ( 𝑋𝑧𝑄𝑧 ) ) )
13 12 ibi ( 𝑄 { 𝑧𝑆𝑋𝑧 } → ∀ 𝑧𝑆 ( 𝑋𝑧𝑄𝑧 ) )
14 11 13 syl6bi ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → ( 𝑄 ∈ ( 𝑈𝑋 ) → ∀ 𝑧𝑆 ( 𝑋𝑧𝑄𝑧 ) ) )
15 sseq2 ( 𝑧 = 𝑌 → ( 𝑋𝑧𝑋𝑌 ) )
16 eleq2 ( 𝑧 = 𝑌 → ( 𝑄𝑧𝑄𝑌 ) )
17 15 16 imbi12d ( 𝑧 = 𝑌 → ( ( 𝑋𝑧𝑄𝑧 ) ↔ ( 𝑋𝑌𝑄𝑌 ) ) )
18 17 rspccv ( ∀ 𝑧𝑆 ( 𝑋𝑧𝑄𝑧 ) → ( 𝑌𝑆 → ( 𝑋𝑌𝑄𝑌 ) ) )
19 18 com13 ( 𝑋𝑌 → ( 𝑌𝑆 → ( ∀ 𝑧𝑆 ( 𝑋𝑧𝑄𝑧 ) → 𝑄𝑌 ) ) )
20 19 imp ( ( 𝑋𝑌𝑌𝑆 ) → ( ∀ 𝑧𝑆 ( 𝑋𝑧𝑄𝑧 ) → 𝑄𝑌 ) )
21 20 3adant1 ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → ( ∀ 𝑧𝑆 ( 𝑋𝑧𝑄𝑧 ) → 𝑄𝑌 ) )
22 14 21 syld ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) → ( 𝑄 ∈ ( 𝑈𝑋 ) → 𝑄𝑌 ) )
23 22 imp ( ( ( 𝐾𝑉𝑋𝑌𝑌𝑆 ) ∧ 𝑄 ∈ ( 𝑈𝑋 ) ) → 𝑄𝑌 )