Step |
Hyp |
Ref |
Expression |
1 |
|
elply |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
2 |
|
simpr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
3 |
|
simpll |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → 𝑆 ⊆ ℂ ) |
4 |
|
cnex |
⊢ ℂ ∈ V |
5 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
6 |
3 4 5
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → 𝑆 ∈ V ) |
7 |
|
snex |
⊢ { 0 } ∈ V |
8 |
|
unexg |
⊢ ( ( 𝑆 ∈ V ∧ { 0 } ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
9 |
6 7 8
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
11 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝑓 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
12 |
9 10 11
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝑓 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
13 |
2 12
|
mpbid |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → 𝑓 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
14 |
13
|
ffvelrnda |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
15 |
|
ssun2 |
⊢ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) |
16 |
|
c0ex |
⊢ 0 ∈ V |
17 |
16
|
snss |
⊢ ( 0 ∈ ( 𝑆 ∪ { 0 } ) ↔ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) ) |
18 |
15 17
|
mpbir |
⊢ 0 ∈ ( 𝑆 ∪ { 0 } ) |
19 |
|
ifcl |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑆 ∪ { 0 } ) ∧ 0 ∈ ( 𝑆 ∪ { 0 } ) ) → if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
20 |
14 18 19
|
sylancl |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ 𝑥 ∈ ℕ0 ) → if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
21 |
20
|
fmpttd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
22 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
23 |
9 10 22
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
24 |
21 23
|
mpbird |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
25 |
|
eleq1w |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∈ ( 0 ... 𝑛 ) ↔ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑘 ) ) |
27 |
25 26
|
ifbieq1d |
⊢ ( 𝑥 = 𝑘 → if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) = if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) ) |
28 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) |
29 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑘 ) ∈ V |
30 |
29 16
|
ifex |
⊢ if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) ∈ V |
31 |
27 28 30
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) ) |
32 |
31
|
ad2antll |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) ) |
33 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ ( 0 ... 𝑛 ) → if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) = 0 ) |
34 |
33
|
eqeq2d |
⊢ ( ¬ 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) ↔ ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) = 0 ) ) |
35 |
32 34
|
syl5ibcom |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) → ( ¬ 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) = 0 ) ) |
36 |
35
|
necon1ad |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ ( 0 ... 𝑛 ) ) ) |
37 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ≤ 𝑛 ) |
38 |
36 37
|
syl6 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑛 ) ) |
39 |
38
|
anassrs |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑛 ) ) |
40 |
39
|
ralrimiva |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ∀ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑛 ) ) |
41 |
|
simplr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → 𝑛 ∈ ℕ0 ) |
42 |
|
0cnd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → 0 ∈ ℂ ) |
43 |
42
|
snssd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → { 0 } ⊆ ℂ ) |
44 |
3 43
|
unssd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
45 |
21 44
|
fssd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) : ℕ0 ⟶ ℂ ) |
46 |
|
plyco0 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) : ℕ0 ⟶ ℂ ) → ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑛 ) ) ) |
47 |
41 45 46
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑛 ) ) ) |
48 |
40 47
|
mpbird |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ) |
49 |
|
eqidd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
50 |
|
imaeq1 |
⊢ ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) → ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
51 |
50
|
eqeq1d |
⊢ ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) → ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ↔ ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ) ) |
52 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) → ( 𝑎 ‘ 𝑘 ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) ) |
53 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ∈ ℕ0 ) |
54 |
53 31
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) ) |
55 |
|
iftrue |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑘 ) , 0 ) = ( 𝑓 ‘ 𝑘 ) ) |
56 |
54 55
|
eqtrd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
57 |
52 56
|
sylan9eq |
⊢ ( ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑎 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
58 |
57
|
oveq1d |
⊢ ( ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
59 |
58
|
sumeq2dv |
⊢ ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
60 |
59
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
62 |
51 61
|
anbi12d |
⊢ ( 𝑎 = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) → ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ↔ ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
63 |
62
|
rspcev |
⊢ ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∧ ( ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 ∈ ( 0 ... 𝑛 ) , ( 𝑓 ‘ 𝑥 ) , 0 ) ) “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
64 |
24 48 49 63
|
syl12anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
65 |
|
eqeq1 |
⊢ ( 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ( 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
66 |
65
|
anbi2d |
⊢ ( 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ↔ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
67 |
66
|
rexbidv |
⊢ ( 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ↔ ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
68 |
64 67
|
syl5ibrcom |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) → ( 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
69 |
68
|
rexlimdva |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ∃ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
70 |
69
|
reximdva |
⊢ ( 𝑆 ⊆ ℂ → ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
71 |
70
|
imdistani |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑓 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑓 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) → ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
72 |
1 71
|
sylbi |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
73 |
|
simpr |
⊢ ( ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
74 |
73
|
reximi |
⊢ ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) → ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
75 |
74
|
reximi |
⊢ ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
76 |
75
|
anim2i |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
77 |
|
elply |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
78 |
76 77
|
sylibr |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
79 |
72 78
|
impbii |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |