Metamath Proof Explorer
Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 31-Dec-2013)
|
|
Ref |
Expression |
|
Hypotheses |
elmap.1 |
⊢ 𝐴 ∈ V |
|
|
elmap.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
elpm2 |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elmap.1 |
⊢ 𝐴 ∈ V |
2 |
|
elmap.2 |
⊢ 𝐵 ∈ V |
3 |
|
elpm2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) |