Description: The predicate "is a partial function". (Contributed by NM, 31-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | elpm2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpmg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐵 × 𝐴 ) ) ) ) | |
2 | funssxp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐵 × 𝐴 ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) | |
3 | 1 2 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) ) |