Step |
Hyp |
Ref |
Expression |
1 |
|
fdm |
⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → dom 𝐹 = 𝐶 ) |
2 |
1
|
feq2d |
⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ↔ 𝐹 : 𝐶 ⟶ 𝐴 ) ) |
3 |
1
|
sseq1d |
⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → ( dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ↔ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ↔ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
6 |
5
|
ibir |
⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) |
7 |
|
elpm2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) ) |
8 |
6 7
|
syl5ibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) → 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ) |