Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmapat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
pmapat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
Assertion | elpmapat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ ( 𝑀 ‘ 𝑃 ) ↔ 𝑋 = 𝑃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
2 | pmapat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
3 | 1 2 | pmapat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑃 ) = { 𝑃 } ) |
4 | 3 | eleq2d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ ( 𝑀 ‘ 𝑃 ) ↔ 𝑋 ∈ { 𝑃 } ) ) |
5 | elsn2g | ⊢ ( 𝑃 ∈ 𝐴 → ( 𝑋 ∈ { 𝑃 } ↔ 𝑋 = 𝑃 ) ) | |
6 | 5 | adantl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ { 𝑃 } ↔ 𝑋 = 𝑃 ) ) |
7 | 4 6 | bitrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∈ ( 𝑀 ‘ 𝑃 ) ↔ 𝑋 = 𝑃 ) ) |