Metamath Proof Explorer


Theorem elpmapat

Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapat.a 𝐴 = ( Atoms ‘ 𝐾 )
pmapat.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion elpmapat ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑋 ∈ ( 𝑀𝑃 ) ↔ 𝑋 = 𝑃 ) )

Proof

Step Hyp Ref Expression
1 pmapat.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pmapat.m 𝑀 = ( pmap ‘ 𝐾 )
3 1 2 pmapat ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑀𝑃 ) = { 𝑃 } )
4 3 eleq2d ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑋 ∈ ( 𝑀𝑃 ) ↔ 𝑋 ∈ { 𝑃 } ) )
5 elsn2g ( 𝑃𝐴 → ( 𝑋 ∈ { 𝑃 } ↔ 𝑋 = 𝑃 ) )
6 5 adantl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑋 ∈ { 𝑃 } ↔ 𝑋 = 𝑃 ) )
7 4 6 bitrd ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑋 ∈ ( 𝑀𝑃 ) ↔ 𝑋 = 𝑃 ) )