Step |
Hyp |
Ref |
Expression |
1 |
|
pmvalg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ↑pm 𝐵 ) = { 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑔 } ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ 𝐶 ∈ { 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑔 } ) ) |
3 |
|
funeq |
⊢ ( 𝑔 = 𝐶 → ( Fun 𝑔 ↔ Fun 𝐶 ) ) |
4 |
3
|
elrab |
⊢ ( 𝐶 ∈ { 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑔 } ↔ ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ Fun 𝐶 ) ) |
5 |
2 4
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ Fun 𝐶 ) ) ) |
6 |
5
|
biancomd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐶 ∧ 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ) ) ) |
7 |
|
elex |
⊢ ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) |
8 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) ) |
9 |
|
xpexg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
10 |
9
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
11 |
|
ssexg |
⊢ ( ( 𝐶 ⊆ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ∈ V ) → 𝐶 ∈ V ) |
12 |
11
|
expcom |
⊢ ( ( 𝐵 × 𝐴 ) ∈ V → ( 𝐶 ⊆ ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ⊆ ( 𝐵 × 𝐴 ) → 𝐶 ∈ V ) ) |
14 |
|
elpwg |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) |
15 |
14
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ V → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
16 |
8 13 15
|
pm5.21ndd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( Fun 𝐶 ∧ 𝐶 ∈ 𝒫 ( 𝐵 × 𝐴 ) ) ↔ ( Fun 𝐶 ∧ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
18 |
6 17
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝐶 ∧ 𝐶 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |