Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpmi | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → ¬ ( 𝐴 ↑pm 𝐵 ) = ∅ ) | |
| 2 | fnpm | ⊢ ↑pm Fn ( V × V ) | |
| 3 | 2 | fndmi | ⊢ dom ↑pm = ( V × V ) |
| 4 | 3 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ↑pm 𝐵 ) = ∅ ) |
| 5 | 1 4 | nsyl2 | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 6 | elpm2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) ) |
| 8 | 7 | ibi | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) |