Metamath Proof Explorer


Theorem elpmi

Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015)

Ref Expression
Assertion elpmi ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → ( 𝐹 : dom 𝐹𝐴 ∧ dom 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 n0i ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → ¬ ( 𝐴pm 𝐵 ) = ∅ )
2 fnpm pm Fn ( V × V )
3 2 fndmi dom ↑pm = ( V × V )
4 3 ndmov ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴pm 𝐵 ) = ∅ )
5 1 4 nsyl2 ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
6 elpm2g ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ∈ ( 𝐴pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹𝐴 ∧ dom 𝐹𝐵 ) ) )
7 5 6 syl ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → ( 𝐹 ∈ ( 𝐴pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹𝐴 ∧ dom 𝐹𝐵 ) ) )
8 7 ibi ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → ( 𝐹 : dom 𝐹𝐴 ∧ dom 𝐹𝐵 ) )