Metamath Proof Explorer


Theorem elpmi2

Description: The domain of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion elpmi2 ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → dom 𝐹𝐵 )

Proof

Step Hyp Ref Expression
1 elpmi ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → ( 𝐹 : dom 𝐹𝐴 ∧ dom 𝐹𝐵 ) )
2 1 simprd ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → dom 𝐹𝐵 )