Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑧 / 𝑦 ) ) |
2 |
|
rexcom |
⊢ ( ∃ 𝑧 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑧 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) ) |
3 |
1 2
|
bitri |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) ) |
4 |
|
breq2 |
⊢ ( 𝐴 = ( 𝑧 / 𝑦 ) → ( 0 < 𝐴 ↔ 0 < ( 𝑧 / 𝑦 ) ) ) |
5 |
|
zre |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) |
6 |
5
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∈ ℝ ) |
7 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
8 |
7
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → 𝑦 ∈ ℝ ) |
9 |
|
nngt0 |
⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → 0 < 𝑦 ) |
11 |
|
gt0div |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → ( 0 < 𝑧 ↔ 0 < ( 𝑧 / 𝑦 ) ) ) |
12 |
6 8 10 11
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < 𝑧 ↔ 0 < ( 𝑧 / 𝑦 ) ) ) |
13 |
12
|
bicomd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < ( 𝑧 / 𝑦 ) ↔ 0 < 𝑧 ) ) |
14 |
4 13
|
sylan9bb |
⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝐴 ↔ 0 < 𝑧 ) ) |
15 |
|
elnnz |
⊢ ( 𝑧 ∈ ℕ ↔ ( 𝑧 ∈ ℤ ∧ 0 < 𝑧 ) ) |
16 |
15
|
simplbi2 |
⊢ ( 𝑧 ∈ ℤ → ( 0 < 𝑧 → 𝑧 ∈ ℕ ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < 𝑧 → 𝑧 ∈ ℕ ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝑧 → 𝑧 ∈ ℕ ) ) |
19 |
18
|
imp |
⊢ ( ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) ∧ 0 < 𝑧 ) → 𝑧 ∈ ℕ ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 / 𝑦 ) = ( 𝑧 / 𝑦 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 = ( 𝑥 / 𝑦 ) ↔ 𝐴 = ( 𝑧 / 𝑦 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) ∧ 0 < 𝑧 ) ∧ 𝑥 = 𝑧 ) → ( 𝐴 = ( 𝑥 / 𝑦 ) ↔ 𝐴 = ( 𝑧 / 𝑦 ) ) ) |
23 |
|
simpll |
⊢ ( ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) ∧ 0 < 𝑧 ) → 𝐴 = ( 𝑧 / 𝑦 ) ) |
24 |
19 22 23
|
rspcedvd |
⊢ ( ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) ∧ 0 < 𝑧 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
25 |
24
|
ex |
⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝑧 → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
26 |
14 25
|
sylbid |
⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
27 |
26
|
ex |
⊢ ( 𝐴 = ( 𝑧 / 𝑦 ) → ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) ) |
28 |
27
|
com13 |
⊢ ( 0 < 𝐴 → ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) ) |
29 |
28
|
impl |
⊢ ( ( ( 0 < 𝐴 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ℤ ) → ( 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
30 |
29
|
rexlimdva |
⊢ ( ( 0 < 𝐴 ∧ 𝑦 ∈ ℕ ) → ( ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
31 |
30
|
reximdva |
⊢ ( 0 < 𝐴 → ( ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
32 |
3 31
|
syl5bi |
⊢ ( 0 < 𝐴 → ( 𝐴 ∈ ℚ → ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
33 |
32
|
impcom |
⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
34 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
35 |
33 34
|
sylibr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |