| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elq | ⊢ ( 𝐴  ∈  ℚ  ↔  ∃ 𝑧  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑧  /  𝑦 ) ) | 
						
							| 2 |  | rexcom | ⊢ ( ∃ 𝑧  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑧  /  𝑦 )  ↔  ∃ 𝑦  ∈  ℕ ∃ 𝑧  ∈  ℤ 𝐴  =  ( 𝑧  /  𝑦 ) ) | 
						
							| 3 | 1 2 | bitri | ⊢ ( 𝐴  ∈  ℚ  ↔  ∃ 𝑦  ∈  ℕ ∃ 𝑧  ∈  ℤ 𝐴  =  ( 𝑧  /  𝑦 ) ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝐴  =  ( 𝑧  /  𝑦 )  →  ( 0  <  𝐴  ↔  0  <  ( 𝑧  /  𝑦 ) ) ) | 
						
							| 5 |  | zre | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℝ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  𝑧  ∈  ℝ ) | 
						
							| 7 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  𝑦  ∈  ℝ ) | 
						
							| 9 |  | nngt0 | ⊢ ( 𝑦  ∈  ℕ  →  0  <  𝑦 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  0  <  𝑦 ) | 
						
							| 11 |  | gt0div | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  0  <  𝑦 )  →  ( 0  <  𝑧  ↔  0  <  ( 𝑧  /  𝑦 ) ) ) | 
						
							| 12 | 6 8 10 11 | syl3anc | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  ( 0  <  𝑧  ↔  0  <  ( 𝑧  /  𝑦 ) ) ) | 
						
							| 13 | 12 | bicomd | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  ( 0  <  ( 𝑧  /  𝑦 )  ↔  0  <  𝑧 ) ) | 
						
							| 14 | 4 13 | sylan9bb | ⊢ ( ( 𝐴  =  ( 𝑧  /  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ ) )  →  ( 0  <  𝐴  ↔  0  <  𝑧 ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  /  𝑦 )  =  ( 𝑧  /  𝑦 ) ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐴  =  ( 𝑥  /  𝑦 )  ↔  𝐴  =  ( 𝑧  /  𝑦 ) ) ) | 
						
							| 17 |  | elnnz | ⊢ ( 𝑧  ∈  ℕ  ↔  ( 𝑧  ∈  ℤ  ∧  0  <  𝑧 ) ) | 
						
							| 18 | 17 | simplbi2 | ⊢ ( 𝑧  ∈  ℤ  →  ( 0  <  𝑧  →  𝑧  ∈  ℕ ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  ( 0  <  𝑧  →  𝑧  ∈  ℕ ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐴  =  ( 𝑧  /  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ ) )  →  ( 0  <  𝑧  →  𝑧  ∈  ℕ ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( ( 𝐴  =  ( 𝑧  /  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ ) )  ∧  0  <  𝑧 )  →  𝑧  ∈  ℕ ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝐴  =  ( 𝑧  /  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ ) )  ∧  0  <  𝑧 )  →  𝐴  =  ( 𝑧  /  𝑦 ) ) | 
						
							| 23 | 16 21 22 | rspcedvdw | ⊢ ( ( ( 𝐴  =  ( 𝑧  /  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ ) )  ∧  0  <  𝑧 )  →  ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( ( 𝐴  =  ( 𝑧  /  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ ) )  →  ( 0  <  𝑧  →  ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 25 | 14 24 | sylbid | ⊢ ( ( 𝐴  =  ( 𝑧  /  𝑦 )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ ) )  →  ( 0  <  𝐴  →  ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 26 | 25 | ex | ⊢ ( 𝐴  =  ( 𝑧  /  𝑦 )  →  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  ( 0  <  𝐴  →  ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) ) | 
						
							| 27 | 26 | com13 | ⊢ ( 0  <  𝐴  →  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℤ )  →  ( 𝐴  =  ( 𝑧  /  𝑦 )  →  ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) ) | 
						
							| 28 | 27 | impl | ⊢ ( ( ( 0  <  𝐴  ∧  𝑦  ∈  ℕ )  ∧  𝑧  ∈  ℤ )  →  ( 𝐴  =  ( 𝑧  /  𝑦 )  →  ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 29 | 28 | rexlimdva | ⊢ ( ( 0  <  𝐴  ∧  𝑦  ∈  ℕ )  →  ( ∃ 𝑧  ∈  ℤ 𝐴  =  ( 𝑧  /  𝑦 )  →  ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 30 | 29 | reximdva | ⊢ ( 0  <  𝐴  →  ( ∃ 𝑦  ∈  ℕ ∃ 𝑧  ∈  ℤ 𝐴  =  ( 𝑧  /  𝑦 )  →  ∃ 𝑦  ∈  ℕ ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 31 | 3 30 | biimtrid | ⊢ ( 0  <  𝐴  →  ( 𝐴  ∈  ℚ  →  ∃ 𝑦  ∈  ℕ ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( 𝐴  ∈  ℚ  ∧  0  <  𝐴 )  →  ∃ 𝑦  ∈  ℕ ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 33 |  | rexcom | ⊢ ( ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ↔  ∃ 𝑦  ∈  ℕ ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( ( 𝐴  ∈  ℚ  ∧  0  <  𝐴 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) |