Step |
Hyp |
Ref |
Expression |
1 |
|
elpq |
⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
2 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
3 |
|
znq |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 / 𝑦 ) ∈ ℚ ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 / 𝑦 ) ∈ ℚ ) |
5 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
6 |
|
nngt0 |
⊢ ( 𝑥 ∈ ℕ → 0 < 𝑥 ) |
7 |
5 6
|
jca |
⊢ ( 𝑥 ∈ ℕ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
8 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
9 |
|
nngt0 |
⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) |
10 |
8 9
|
jca |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) |
11 |
|
divgt0 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → 0 < ( 𝑥 / 𝑦 ) ) |
12 |
7 10 11
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → 0 < ( 𝑥 / 𝑦 ) ) |
13 |
4 12
|
jca |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 / 𝑦 ) ∈ ℚ ∧ 0 < ( 𝑥 / 𝑦 ) ) ) |
14 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℚ ↔ ( 𝑥 / 𝑦 ) ∈ ℚ ) ) |
15 |
|
breq2 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 0 < 𝐴 ↔ 0 < ( 𝑥 / 𝑦 ) ) ) |
16 |
14 15
|
anbi12d |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ↔ ( ( 𝑥 / 𝑦 ) ∈ ℚ ∧ 0 < ( 𝑥 / 𝑦 ) ) ) ) |
17 |
13 16
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ) ) |
18 |
17
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ) |
19 |
1 18
|
impbii |
⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |