| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpq | ⊢ ( ( 𝐴  ∈  ℚ  ∧  0  <  𝐴 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 2 |  | nnz | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℤ ) | 
						
							| 3 |  | znq | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  /  𝑦 )  ∈  ℚ ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  /  𝑦 )  ∈  ℚ ) | 
						
							| 5 |  | nnre | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ ) | 
						
							| 6 |  | nngt0 | ⊢ ( 𝑥  ∈  ℕ  →  0  <  𝑥 ) | 
						
							| 7 | 5 6 | jca | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 8 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 9 |  | nngt0 | ⊢ ( 𝑦  ∈  ℕ  →  0  <  𝑦 ) | 
						
							| 10 | 8 9 | jca | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 ) ) | 
						
							| 11 |  | divgt0 | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 )  ∧  ( 𝑦  ∈  ℝ  ∧  0  <  𝑦 ) )  →  0  <  ( 𝑥  /  𝑦 ) ) | 
						
							| 12 | 7 10 11 | syl2an | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  0  <  ( 𝑥  /  𝑦 ) ) | 
						
							| 13 | 4 12 | jca | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑥  /  𝑦 )  ∈  ℚ  ∧  0  <  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 𝐴  ∈  ℚ  ↔  ( 𝑥  /  𝑦 )  ∈  ℚ ) ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 0  <  𝐴  ↔  0  <  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 16 | 14 15 | anbi12d | ⊢ ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( ( 𝐴  ∈  ℚ  ∧  0  <  𝐴 )  ↔  ( ( 𝑥  /  𝑦 )  ∈  ℚ  ∧  0  <  ( 𝑥  /  𝑦 ) ) ) ) | 
						
							| 17 | 13 16 | syl5ibrcom | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 𝐴  ∈  ℚ  ∧  0  <  𝐴 ) ) ) | 
						
							| 18 | 17 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 𝐴  ∈  ℚ  ∧  0  <  𝐴 ) ) | 
						
							| 19 | 1 18 | impbii | ⊢ ( ( 𝐴  ∈  ℚ  ∧  0  <  𝐴 )  ↔  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) |