Metamath Proof Explorer


Theorem elpr2OLD

Description: Obsolete version of elpr2 as of 25-May-2024. (Contributed by NM, 14-Oct-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses elpr2.1 𝐵 ∈ V
elpr2.2 𝐶 ∈ V
Assertion elpr2OLD ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 elpr2.1 𝐵 ∈ V
2 elpr2.2 𝐶 ∈ V
3 elex ( 𝐴 ∈ { 𝐵 , 𝐶 } → 𝐴 ∈ V )
4 eleq1 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) )
5 1 4 mpbiri ( 𝐴 = 𝐵𝐴 ∈ V )
6 eleq1 ( 𝐴 = 𝐶 → ( 𝐴 ∈ V ↔ 𝐶 ∈ V ) )
7 2 6 mpbiri ( 𝐴 = 𝐶𝐴 ∈ V )
8 5 7 jaoi ( ( 𝐴 = 𝐵𝐴 = 𝐶 ) → 𝐴 ∈ V )
9 elprg ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )
10 3 8 9 pm5.21nii ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) )