Description: Obsolete version of elpr2 as of 25-May-2024. (Contributed by NM, 14-Oct-2005) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elpr2.1 | ⊢ 𝐵 ∈ V | |
elpr2.2 | ⊢ 𝐶 ∈ V | ||
Assertion | elpr2OLD | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr2.1 | ⊢ 𝐵 ∈ V | |
2 | elpr2.2 | ⊢ 𝐶 ∈ V | |
3 | elex | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → 𝐴 ∈ V ) | |
4 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) | |
5 | 1 4 | mpbiri | ⊢ ( 𝐴 = 𝐵 → 𝐴 ∈ V ) |
6 | eleq1 | ⊢ ( 𝐴 = 𝐶 → ( 𝐴 ∈ V ↔ 𝐶 ∈ V ) ) | |
7 | 2 6 | mpbiri | ⊢ ( 𝐴 = 𝐶 → 𝐴 ∈ V ) |
8 | 5 7 | jaoi | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) → 𝐴 ∈ V ) |
9 | elprg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | |
10 | 3 8 9 | pm5.21nii | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |