Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → 𝐴 ∈ V ) |
2 |
1
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐴 ∈ { 𝐵 , 𝐶 } → 𝐴 ∈ V ) ) |
3 |
|
elex |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) |
4 |
|
eleq1a |
⊢ ( 𝐵 ∈ V → ( 𝐴 = 𝐵 → 𝐴 ∈ V ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 = 𝐵 → 𝐴 ∈ V ) ) |
6 |
|
elex |
⊢ ( 𝐶 ∈ 𝑊 → 𝐶 ∈ V ) |
7 |
|
eleq1a |
⊢ ( 𝐶 ∈ V → ( 𝐴 = 𝐶 → 𝐴 ∈ V ) ) |
8 |
6 7
|
syl |
⊢ ( 𝐶 ∈ 𝑊 → ( 𝐴 = 𝐶 → 𝐴 ∈ V ) ) |
9 |
5 8
|
jaao |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) → 𝐴 ∈ V ) ) |
10 |
|
elprg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
11 |
10
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) ) |
12 |
2 9 11
|
pm5.21ndd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |