Metamath Proof Explorer


Theorem elpr2g

Description: A member of a pair of sets is one or the other of them, and conversely. Exercise 1 of TakeutiZaring p. 15. (Contributed by NM, 14-Oct-2005) Generalize from sethood hypothesis to sethood antecedent. (Revised by BJ, 25-May-2024)

Ref Expression
Assertion elpr2g ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ { 𝐵 , 𝐶 } → 𝐴 ∈ V )
2 1 a1i ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐴 ∈ { 𝐵 , 𝐶 } → 𝐴 ∈ V ) )
3 elex ( 𝐵𝑉𝐵 ∈ V )
4 eleq1a ( 𝐵 ∈ V → ( 𝐴 = 𝐵𝐴 ∈ V ) )
5 3 4 syl ( 𝐵𝑉 → ( 𝐴 = 𝐵𝐴 ∈ V ) )
6 elex ( 𝐶𝑊𝐶 ∈ V )
7 eleq1a ( 𝐶 ∈ V → ( 𝐴 = 𝐶𝐴 ∈ V ) )
8 6 7 syl ( 𝐶𝑊 → ( 𝐴 = 𝐶𝐴 ∈ V ) )
9 5 8 jaao ( ( 𝐵𝑉𝐶𝑊 ) → ( ( 𝐴 = 𝐵𝐴 = 𝐶 ) → 𝐴 ∈ V ) )
10 elprg ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )
11 10 a1i ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) ) )
12 2 9 11 pm5.21ndd ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )