Step |
Hyp |
Ref |
Expression |
1 |
|
prprc1 |
⊢ ( ¬ 𝑀 ∈ V → { 𝑀 , 𝑁 } = { 𝑁 } ) |
2 |
|
hashsng |
⊢ ( 𝑁 ∈ V → ( ♯ ‘ { 𝑁 } ) = 1 ) |
3 |
|
fveq2 |
⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ( ♯ ‘ { 𝑀 , 𝑁 } ) = ( ♯ ‘ { 𝑁 } ) ) |
4 |
3
|
eqcomd |
⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ( ♯ ‘ { 𝑁 } ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) ) |
5 |
4
|
eqeq1d |
⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ( ( ♯ ‘ { 𝑁 } ) = 1 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 ) ) |
6 |
5
|
biimpa |
⊢ ( ( { 𝑀 , 𝑁 } = { 𝑁 } ∧ ( ♯ ‘ { 𝑁 } ) = 1 ) → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 ) |
7 |
|
id |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 ) |
8 |
|
1ne2 |
⊢ 1 ≠ 2 |
9 |
8
|
a1i |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → 1 ≠ 2 ) |
10 |
7 9
|
eqnetrd |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → ( ♯ ‘ { 𝑀 , 𝑁 } ) ≠ 2 ) |
11 |
10
|
neneqd |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 1 → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
12 |
6 11
|
syl |
⊢ ( ( { 𝑀 , 𝑁 } = { 𝑁 } ∧ ( ♯ ‘ { 𝑁 } ) = 1 ) → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
13 |
12
|
expcom |
⊢ ( ( ♯ ‘ { 𝑁 } ) = 1 → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
14 |
2 13
|
syl |
⊢ ( 𝑁 ∈ V → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
15 |
|
snprc |
⊢ ( ¬ 𝑁 ∈ V ↔ { 𝑁 } = ∅ ) |
16 |
|
eqeq2 |
⊢ ( { 𝑁 } = ∅ → ( { 𝑀 , 𝑁 } = { 𝑁 } ↔ { 𝑀 , 𝑁 } = ∅ ) ) |
17 |
16
|
biimpa |
⊢ ( ( { 𝑁 } = ∅ ∧ { 𝑀 , 𝑁 } = { 𝑁 } ) → { 𝑀 , 𝑁 } = ∅ ) |
18 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
19 |
|
fveq2 |
⊢ ( { 𝑀 , 𝑁 } = ∅ → ( ♯ ‘ { 𝑀 , 𝑁 } ) = ( ♯ ‘ ∅ ) ) |
20 |
19
|
eqcomd |
⊢ ( { 𝑀 , 𝑁 } = ∅ → ( ♯ ‘ ∅ ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) ) |
21 |
20
|
eqeq1d |
⊢ ( { 𝑀 , 𝑁 } = ∅ → ( ( ♯ ‘ ∅ ) = 0 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 ) ) |
22 |
21
|
biimpa |
⊢ ( ( { 𝑀 , 𝑁 } = ∅ ∧ ( ♯ ‘ ∅ ) = 0 ) → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 ) |
23 |
|
id |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 ) |
24 |
|
0ne2 |
⊢ 0 ≠ 2 |
25 |
24
|
a1i |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → 0 ≠ 2 ) |
26 |
23 25
|
eqnetrd |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → ( ♯ ‘ { 𝑀 , 𝑁 } ) ≠ 2 ) |
27 |
26
|
neneqd |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 0 → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
28 |
22 27
|
syl |
⊢ ( ( { 𝑀 , 𝑁 } = ∅ ∧ ( ♯ ‘ ∅ ) = 0 ) → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
29 |
17 18 28
|
sylancl |
⊢ ( ( { 𝑁 } = ∅ ∧ { 𝑀 , 𝑁 } = { 𝑁 } ) → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
30 |
29
|
ex |
⊢ ( { 𝑁 } = ∅ → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
31 |
15 30
|
sylbi |
⊢ ( ¬ 𝑁 ∈ V → ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
32 |
14 31
|
pm2.61i |
⊢ ( { 𝑀 , 𝑁 } = { 𝑁 } → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
33 |
1 32
|
syl |
⊢ ( ¬ 𝑀 ∈ V → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |