Metamath Proof Explorer


Theorem elpred

Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Hypothesis elpred.1 𝑌 ∈ V
Assertion elpred ( 𝑋𝐷 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 elpred.1 𝑌 ∈ V
2 elpredgg ( ( 𝑋𝐷𝑌 ∈ V ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )
3 1 2 mpan2 ( 𝑋𝐷 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )