Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011) (Proof shortened by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elpred.1 | ⊢ 𝑌 ∈ V | |
Assertion | elpred | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpred.1 | ⊢ 𝑌 ∈ V | |
2 | elpredgg | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ V ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) |