Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) (Proof shortened by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elpredg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpredgg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) | |
2 | ibar | ⊢ ( 𝑌 ∈ 𝐴 → ( 𝑌 𝑅 𝑋 ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) | |
3 | 2 | bicomd | ⊢ ( 𝑌 ∈ 𝐴 → ( ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) ) |
4 | 3 | adantl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) ) |
5 | 1 4 | bitrd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) ) |