Metamath Proof Explorer


Theorem elpredg

Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Assertion elpredg ( ( 𝑋𝐵𝑌𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) )

Proof

Step Hyp Ref Expression
1 elpredgg ( ( 𝑋𝐵𝑌𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )
2 ibar ( 𝑌𝐴 → ( 𝑌 𝑅 𝑋 ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )
3 2 bicomd ( 𝑌𝐴 → ( ( 𝑌𝐴𝑌 𝑅 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) )
4 3 adantl ( ( 𝑋𝐵𝑌𝐴 ) → ( ( 𝑌𝐴𝑌 𝑅 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) )
5 1 4 bitrd ( ( 𝑋𝐵𝑌𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 𝑅 𝑋 ) )