Metamath Proof Explorer


Theorem elpredgg

Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) Generalize to closed form. (Revised by BJ, 16-Oct-2024)

Ref Expression
Assertion elpredgg ( ( 𝑋𝑉𝑌𝑊 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
2 1 elin2 ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ) )
3 elinisegg ( ( 𝑋𝑉𝑌𝑊 ) → ( 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ↔ 𝑌 𝑅 𝑋 ) )
4 3 anbi2d ( ( 𝑋𝑉𝑌𝑊 ) → ( ( 𝑌𝐴𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )
5 2 4 syl5bb ( ( 𝑋𝑉𝑌𝑊 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) ) )