Metamath Proof Explorer


Theorem elpredim

Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Hypothesis elpredim.1 𝑋 ∈ V
Assertion elpredim ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 )

Proof

Step Hyp Ref Expression
1 elpredim.1 𝑋 ∈ V
2 elpredimg ( ( 𝑋 ∈ V ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 𝑅 𝑋 )
3 1 2 mpan ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 )