Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012) Generalize to closed form. (Revised by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elpredimg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 𝑅 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpredgg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) | |
2 | simpr | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) → 𝑌 𝑅 𝑋 ) | |
3 | 1 2 | syl6bi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 ) ) |
4 | 3 | syldbl2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 𝑅 𝑋 ) |