Metamath Proof Explorer


Theorem elpreimad

Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elpreimad.f ( 𝜑𝐹 Fn 𝐴 )
elpreimad.b ( 𝜑𝐵𝐴 )
elpreimad.c ( 𝜑 → ( 𝐹𝐵 ) ∈ 𝐶 )
Assertion elpreimad ( 𝜑𝐵 ∈ ( 𝐹𝐶 ) )

Proof

Step Hyp Ref Expression
1 elpreimad.f ( 𝜑𝐹 Fn 𝐴 )
2 elpreimad.b ( 𝜑𝐵𝐴 )
3 elpreimad.c ( 𝜑 → ( 𝐹𝐵 ) ∈ 𝐶 )
4 elpreima ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ( 𝐹𝐶 ) ↔ ( 𝐵𝐴 ∧ ( 𝐹𝐵 ) ∈ 𝐶 ) ) )
5 1 4 syl ( 𝜑 → ( 𝐵 ∈ ( 𝐹𝐶 ) ↔ ( 𝐵𝐴 ∧ ( 𝐹𝐵 ) ∈ 𝐶 ) ) )
6 2 3 5 mpbir2and ( 𝜑𝐵 ∈ ( 𝐹𝐶 ) )