Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elpreqprb | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreqpr | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) | |
2 | prid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝑥 } ) | |
3 | eleq2 | ⊢ ( { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ 𝐴 ∈ { 𝐴 , 𝑥 } ) ) | |
4 | 2 3 | syl5ibrcom | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } → 𝐴 ∈ { 𝐵 , 𝐶 } ) ) |
5 | 4 | exlimdv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } → 𝐴 ∈ { 𝐵 , 𝐶 } ) ) |
6 | 1 5 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) ) |