Metamath Proof Explorer


Theorem elpreqprlem

Description: Lemma for elpreqpr . (Contributed by Scott Fenton, 7-Dec-2020) (Revised by AV, 9-Dec-2020)

Ref Expression
Assertion elpreqprlem ( 𝐵𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } )

Proof

Step Hyp Ref Expression
1 eqid { 𝐵 , 𝐶 } = { 𝐵 , 𝐶 }
2 preq2 ( 𝑥 = 𝐶 → { 𝐵 , 𝑥 } = { 𝐵 , 𝐶 } )
3 2 eqeq2d ( 𝑥 = 𝐶 → ( { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ↔ { 𝐵 , 𝐶 } = { 𝐵 , 𝐶 } ) )
4 3 spcegv ( 𝐶 ∈ V → ( { 𝐵 , 𝐶 } = { 𝐵 , 𝐶 } → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) )
5 1 4 mpi ( 𝐶 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } )
6 5 a1d ( 𝐶 ∈ V → ( 𝐵𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) )
7 dfsn2 { 𝐵 } = { 𝐵 , 𝐵 }
8 preq2 ( 𝑥 = 𝐵 → { 𝐵 , 𝑥 } = { 𝐵 , 𝐵 } )
9 8 eqeq2d ( 𝑥 = 𝐵 → ( { 𝐵 } = { 𝐵 , 𝑥 } ↔ { 𝐵 } = { 𝐵 , 𝐵 } ) )
10 9 spcegv ( 𝐵𝑉 → ( { 𝐵 } = { 𝐵 , 𝐵 } → ∃ 𝑥 { 𝐵 } = { 𝐵 , 𝑥 } ) )
11 7 10 mpi ( 𝐵𝑉 → ∃ 𝑥 { 𝐵 } = { 𝐵 , 𝑥 } )
12 prprc2 ( ¬ 𝐶 ∈ V → { 𝐵 , 𝐶 } = { 𝐵 } )
13 12 eqeq1d ( ¬ 𝐶 ∈ V → ( { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ↔ { 𝐵 } = { 𝐵 , 𝑥 } ) )
14 13 exbidv ( ¬ 𝐶 ∈ V → ( ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ↔ ∃ 𝑥 { 𝐵 } = { 𝐵 , 𝑥 } ) )
15 11 14 syl5ibr ( ¬ 𝐶 ∈ V → ( 𝐵𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) )
16 6 15 pm2.61i ( 𝐵𝑉 → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } )