Metamath Proof Explorer


Theorem elpri

Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011)

Ref Expression
Assertion elpri ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 elprg ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )
2 1 ibi ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )