Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | elpri | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | |
2 | 1 | ibi | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |