Metamath Proof Explorer


Theorem elprn1

Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elprn1 ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐵 ) → 𝐴 = 𝐶 )

Proof

Step Hyp Ref Expression
1 neneq ( 𝐴𝐵 → ¬ 𝐴 = 𝐵 )
2 1 adantl ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐵 ) → ¬ 𝐴 = 𝐵 )
3 elpri ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
4 3 adantr ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐵 ) → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
5 4 ord ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐵 ) → ( ¬ 𝐴 = 𝐵𝐴 = 𝐶 ) )
6 2 5 mpd ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴𝐵 ) → 𝐴 = 𝐶 )