Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | elprn2 | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq | ⊢ ( 𝐴 ≠ 𝐶 → ¬ 𝐴 = 𝐶 ) | |
2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → ¬ 𝐴 = 𝐶 ) |
3 | elpri | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) | |
4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) |
5 | orcom | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐵 ) ) | |
6 | df-or | ⊢ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 → 𝐴 = 𝐵 ) ) | |
7 | 5 6 | bitri | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ↔ ( ¬ 𝐴 = 𝐶 → 𝐴 = 𝐵 ) ) |
8 | 4 7 | sylib | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → ( ¬ 𝐴 = 𝐶 → 𝐴 = 𝐵 ) ) |
9 | 2 8 | mpd | ⊢ ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐶 ) → 𝐴 = 𝐵 ) |