Step |
Hyp |
Ref |
Expression |
1 |
|
ptbas.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
2 |
1
|
eleq2i |
⊢ ( 𝑆 ∈ 𝐵 ↔ 𝑆 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) |
3 |
|
simpr |
⊢ ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
4 |
|
ixpexg |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ V → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ V ) |
5 |
|
fvexd |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑔 ‘ 𝑦 ) ∈ V ) |
6 |
4 5
|
mprg |
⊢ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ V |
7 |
3 6
|
eqeltrdi |
⊢ ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → 𝑆 ∈ V ) |
8 |
7
|
exlimiv |
⊢ ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → 𝑆 ∈ V ) |
9 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑆 → ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
10 |
9
|
anbi2d |
⊢ ( 𝑥 = 𝑆 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
11 |
10
|
exbidv |
⊢ ( 𝑥 = 𝑆 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
12 |
8 11
|
elab3 |
⊢ ( 𝑆 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
13 |
|
fneq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 Fn 𝐴 ↔ ℎ Fn 𝐴 ) ) |
14 |
|
fveq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ‘ 𝑦 ) = ( ℎ ‘ 𝑦 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑔 = ℎ → ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
14
|
eqeq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
17
|
rexralbidv |
⊢ ( 𝑔 = ℎ → ( ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
19 |
|
difeq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐴 ∖ 𝑧 ) = ( 𝐴 ∖ 𝑤 ) ) |
20 |
19
|
raleqdv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑤 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
20
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑤 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) |
22 |
18 21
|
bitrdi |
⊢ ( 𝑔 = ℎ → ( ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑤 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
23 |
13 16 22
|
3anbi123d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑤 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ) |
24 |
14
|
ixpeq2dv |
⊢ ( 𝑔 = ℎ → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑔 = ℎ → ( 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ 𝑆 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) ) |
26 |
23 25
|
anbi12d |
⊢ ( 𝑔 = ℎ → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑤 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) ) ) |
27 |
26
|
cbvexvw |
⊢ ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ∃ ℎ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑤 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) ) |
28 |
2 12 27
|
3bitri |
⊢ ( 𝑆 ∈ 𝐵 ↔ ∃ ℎ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑤 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑆 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) ) |