Metamath Proof Explorer


Theorem elpt

Description: Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
Assertion elpt ( 𝑆𝐵 ↔ ∃ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
2 1 eleq2i ( 𝑆𝐵𝑆 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } )
3 simpr ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) → 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) )
4 ixpexg ( ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ V → X 𝑦𝐴 ( 𝑔𝑦 ) ∈ V )
5 fvexd ( 𝑦𝐴 → ( 𝑔𝑦 ) ∈ V )
6 4 5 mprg X 𝑦𝐴 ( 𝑔𝑦 ) ∈ V
7 3 6 eqeltrdi ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) → 𝑆 ∈ V )
8 7 exlimiv ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) → 𝑆 ∈ V )
9 eqeq1 ( 𝑥 = 𝑆 → ( 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ↔ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) )
10 9 anbi2d ( 𝑥 = 𝑆 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) ↔ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) ) )
11 10 exbidv ( 𝑥 = 𝑆 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) ) )
12 8 11 elab3 ( 𝑆 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) )
13 fneq1 ( 𝑔 = → ( 𝑔 Fn 𝐴 Fn 𝐴 ) )
14 fveq1 ( 𝑔 = → ( 𝑔𝑦 ) = ( 𝑦 ) )
15 14 eleq1d ( 𝑔 = → ( ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ↔ ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) )
16 15 ralbidv ( 𝑔 = → ( ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ↔ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) )
17 14 eqeq1d ( 𝑔 = → ( ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ↔ ( 𝑦 ) = ( 𝐹𝑦 ) ) )
18 17 rexralbidv ( 𝑔 = → ( ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ↔ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) )
19 difeq2 ( 𝑧 = 𝑤 → ( 𝐴𝑧 ) = ( 𝐴𝑤 ) )
20 19 raleqdv ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑦 ) = ( 𝐹𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) )
21 20 cbvrexvw ( ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑦 ) = ( 𝐹𝑦 ) ↔ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) )
22 18 21 bitrdi ( 𝑔 = → ( ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ↔ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) )
23 13 16 22 3anbi123d ( 𝑔 = → ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ↔ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) )
24 14 ixpeq2dv ( 𝑔 = X 𝑦𝐴 ( 𝑔𝑦 ) = X 𝑦𝐴 ( 𝑦 ) )
25 24 eqeq2d ( 𝑔 = → ( 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ↔ 𝑆 = X 𝑦𝐴 ( 𝑦 ) ) )
26 23 25 anbi12d ( 𝑔 = → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) ↔ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑦 ) ) ) )
27 26 cbvexvw ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑔𝑦 ) ) ↔ ∃ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑦 ) ) )
28 2 12 27 3bitri ( 𝑆𝐵 ↔ ∃ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑤 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑆 = X 𝑦𝐴 ( 𝑦 ) ) )