| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptbas.1 | ⊢ 𝐵  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝑆  ∈  𝐵  ↔  𝑆  ∈  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 4 |  | ixpexg | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  V  →  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  V ) | 
						
							| 5 |  | fvexd | ⊢ ( 𝑦  ∈  𝐴  →  ( 𝑔 ‘ 𝑦 )  ∈  V ) | 
						
							| 6 | 4 5 | mprg | ⊢ X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  V | 
						
							| 7 | 3 6 | eqeltrdi | ⊢ ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  𝑆  ∈  V ) | 
						
							| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  𝑆  ∈  V ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝑥  =  𝑆  →  ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ↔  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 10 | 9 | anbi2d | ⊢ ( 𝑥  =  𝑆  →  ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ↔  ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) | 
						
							| 11 | 10 | exbidv | ⊢ ( 𝑥  =  𝑆  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ↔  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) | 
						
							| 12 | 8 11 | elab3 | ⊢ ( 𝑆  ∈  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ↔  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 13 |  | fneq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔  Fn  𝐴  ↔  ℎ  Fn  𝐴 ) ) | 
						
							| 14 |  | fveq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔 ‘ 𝑦 )  =  ( ℎ ‘ 𝑦 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ↔  ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑔  =  ℎ  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 17 | 14 | eqeq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ↔  ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 18 | 17 | rexralbidv | ⊢ ( 𝑔  =  ℎ  →  ( ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ↔  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 19 |  | difeq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝐴  ∖  𝑧 )  =  ( 𝐴  ∖  𝑤 ) ) | 
						
							| 20 | 19 | raleqdv | ⊢ ( 𝑧  =  𝑤  →  ( ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 𝐴  ∖  𝑤 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ↔  ∃ 𝑤  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑤 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 22 | 18 21 | bitrdi | ⊢ ( 𝑔  =  ℎ  →  ( ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 )  ↔  ∃ 𝑤  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑤 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 23 | 13 16 22 | 3anbi123d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑤 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 24 | 14 | ixpeq2dv | ⊢ ( 𝑔  =  ℎ  →  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( 𝑔  =  ℎ  →  ( 𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ↔  𝑆  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) ) ) | 
						
							| 26 | 23 25 | anbi12d | ⊢ ( 𝑔  =  ℎ  →  ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ↔  ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑤 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) ) ) ) | 
						
							| 27 | 26 | cbvexvw | ⊢ ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ↔  ∃ ℎ ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑤 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) ) ) | 
						
							| 28 | 2 12 27 | 3bitri | ⊢ ( 𝑆  ∈  𝐵  ↔  ∃ ℎ ( ( ℎ  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑤 ) ( ℎ ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑆  =  X 𝑦  ∈  𝐴 ( ℎ ‘ 𝑦 ) ) ) |