Metamath Proof Explorer


Theorem elpw2

Description: Membership in a power class. Theorem 86 of Suppes p. 47. (Contributed by NM, 11-Oct-2007)

Ref Expression
Hypothesis elpw2.1 𝐵 ∈ V
Assertion elpw2 ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 elpw2.1 𝐵 ∈ V
2 elpw2g ( 𝐵 ∈ V → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
3 1 2 ax-mp ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 )