Description: Membership in a power class. Theorem 86 of Suppes p. 47. (Contributed by NM, 7-Aug-2000)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpw2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 2 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 3 | elpwg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 4 | 3 | biimparc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V ) → 𝐴 ∈ 𝒫 𝐵 ) |
| 5 | 2 4 | syldan | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝒫 𝐵 ) |
| 6 | 5 | expcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵 ) ) |
| 7 | 1 6 | impbid2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |