Metamath Proof Explorer


Theorem elpw2g

Description: Membership in a power class. Theorem 86 of Suppes p. 47. (Contributed by NM, 7-Aug-2000)

Ref Expression
Assertion elpw2g ( 𝐵𝑉 → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 elpwi ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 )
2 ssexg ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
3 elpwg ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
4 3 biimparc ( ( 𝐴𝐵𝐴 ∈ V ) → 𝐴 ∈ 𝒫 𝐵 )
5 2 4 syldan ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ 𝒫 𝐵 )
6 5 expcom ( 𝐵𝑉 → ( 𝐴𝐵𝐴 ∈ 𝒫 𝐵 ) )
7 1 6 impbid2 ( 𝐵𝑉 → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )