Metamath Proof Explorer


Theorem elpwb

Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021)

Ref Expression
Assertion elpwb ( 𝐴 ∈ 𝒫 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ 𝒫 𝐵𝐴 ∈ V )
2 elpwg ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
3 1 2 biadanii ( 𝐴 ∈ 𝒫 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵 ) )